CSE 201

JAVA PROGRAMMING I

Primitive Data Type

Primitive Data Type

byte

8-bit signed
Two's complement
Integer
-128~127

Primitive Data Type

short

16-bit signed Two's complement

Integer
-32768~32767

Primitive Data Type

32-bit signed Two's complement
Integer

$$
-\left(2^{\wedge} 31\right) \sim\left(2^{\wedge} 31\right)-1
$$

Primitive Data Type

long

64-bit signed
Two's complement
Integer

$$
-\left(2^{\wedge} 63\right) \sim\left(2^{\wedge} 63\right)-1
$$

Primitive Data Type

32-bit IEEE 754 floating point

i.e. 12.42581

Primitive Data Type

64-bit
 IEEE 754 floating point

i.e. 12.42581214314

Primitive Data Type

double

Never use float or double to represent precise values Such as currency
Solution: java.math.BigDecimal class

Primitive Data Type

Convention between data types

Small size data type à Big size data type OK i.e. int à long

Small size data type β Big size data type

Primitive Data Type

On June 4, 1996 Ariane 5 rocket launched by the European Space Agency exploded just 40 seconds after its lift-off from Kourou, French Guiana.

It costs $\$ 7$ billion Development $+\$ 500$ million cargo loss

Reason: Convention failed between floating number and 16 -bit integer

Primitive Data Type

boolean
 true, false

This data type represents 1 bit of information

Primitive Data Type

char

16-bit Unicode character

Dec	Hx	Char		Dec	Hx	HTML	Char	Dec	Hx	нTML	Char	Dec	Hx	HTML	Char
-	0	nUL	(nul1)	32	20	\&\#32;	Space	64	40	¢\#64;	(1)	96	60	\&\#96;	.
1	1		(start of heading)	33	21	\&\#33;	!	65	41	\&\#65;	A	97	61	\&\#97;	a
2	2	STX	(Start of text)	34	22	\&\#34;	"	66	42	¢\#66;	B	98	62	¢\#98;	b
3	3		(End of text)	35	23	\&\#35;	\#	67	43	¢\#67	c	99	63	\&\#99;	c
4	4	EOT	(End of transmission)	36	24	\&\#36;	\$	68	44	\&\#68;	D	100	64	\&\#100;	d
5	5		(Enquiry)	37	25	\&\#37;	\%	69	45	¢\#69 ;	E	101	65	\&\#101;	e
6	6	ACk	(Acknowledge)	38	26	\&\#38;	\&	70	46	\&\#70;	F	102	66	\&\#102;	f
7	7		(Bell)	39	27	\&\#39;		71	47	\&\#71;	G	103	67	\&\#103;	g
8	8	bs	(Backspace)	40	28	\&\#40;	1	72	48	¢\#72;	н	104	68	¢\#104;	h
9	9	tab	(Horizontal tab)	41	29	\& 441 ;	1	73	49	\&\#73;	I	105	69	\&\#105;	i
10	A	$L_{\text {LF }}$	(NL line fd, new line)	42	2A	\&\#42;	*	74	4A	\&\#74;	J	106	6A	\&\#106:	j
11	B		(Vertical tab)	43	2B	\& 443 ;	+	75	4 B	¢\#75;	к	107	6B	\&\#107;	k
12	c	FF	(NP form fd, new page)	44	2 C	¢\#44;	,	76	4 C	¢\#76:	L	108	6 C	\&\#108;	1
13	D	CR	(Carriage return)	45	2D		-	77	4D	\&\#77:	M	109	6 D	\&\#109;	m
14	E	so	(shift out)	46	2 E	¢\#46;	,	78	4 E	\&\#78;	s	110	6E	\&\#110;	n
15	F	SI	(shift in)	47	2 F	\&\#47;	1	79	4 F	\&\#79;	-	111	6 F	\&\#111;	-
16	10	dLe	(Data link escape)	48	30	\&\#48;	0	80	50	\&\#80;	P	112	70	\&\#112;	p
17	11	DC1	(Device control 1)	49	31	\&\#49;	1	81	51	\&\#81;	8	113	71	\&\#113;	q
18	12	DC2	(Device control ${ }^{2)}$	50	32	\&\#\#50;	2	82	52	\&\#82;	R	114	72	\&\#114;	r
19	13	DC3	(Device control 3)	51	33	\&\#51;	3	83	53	\&\#83;	s	115	73	\&\#115;	s
20	14	DC4	(Device control 4)	52	34	\& 152 ;	4	84	54	\&\#34;	T	116	74	\&\#116;	t
21	15	нак	(Negative acknowledge)	53	35	\&\#53;	5	85	55	\&\#85;	0	117	75	\&\#117;	u
22	16	syn	(Synchronous idle)	54	36	\&\#\#5;	6	86	56	¢\#86;	v	118	76	\&\#118;	v
23	17	ETB	(End of trans. block)	55	37	\&\#55;	7	87	57	\&\#87;	w	119	77	\&\#119;	w
24	18	CAA	(Cancel)	56	38	\&\#56;	8	88	58	\&\#88;	x	120	78	\&\#120;	z
25	19	EM	(End of medium)	57	39	\& \#57 $^{\text {c }}$	9	89	59	\&\#89;	Y	121	79	\&\#121;	y
26	1A	SUB	(Substitute)	58	3A	\&\#58;	:	90	5A	\&\#90;	z	122	7A	\&\#122;	z
27	18	Esc	(Escape)	59	38	\&\#59;	;	91	5B	\&\#91;	[123	7 B	\&\#123;	f
28	1 C	Fs	(File separator)	60	3 C	\&\#160;	<	92	5 C	\&\#92;	1	124	7 c	\&\#124;	,
29	1 D	gs	(Group separator)	61	3D	\&\#61;	$=$	93	5D	\&\#93;]	125	7 D	\&\#125;)
30	1 E	${ }^{\text {RS }}$	(Record separator)	62	3 E	\&\#62;	>	94	5 E	\&\#94;	^	126	7 E	8\#126;	
31	1 F	us	(Unit separator)	63	3 F	\&\#63;	?	95	5 F	\&\#95;	-	127	7 F	\&\#127;	DEL

Binary Number

1010111000011101010000111110001010101

0's or 1's are allowed only

Binary Number

Decimal to Binary Number $14=1110$

Binary Number

Binary Number to Decimal $10101=21$

Binary Number

Decimal Number: 5428
$\left.\begin{array}{l|l|l|l|c|}\hline 10^{\wedge} 4 \\ =10 * 10 * 10 * 10 \\ =10000\end{array} \begin{array}{l}10 \wedge 3 \\ =10 * 10 * 10 \\ =1000\end{array} \quad \begin{array}{l}10^{\wedge} 2 \\ =10 * 10 \\ =100\end{array}\right)$

Binary Number

Decimal Number: 5428

$10^{\wedge} 4$	10^3	10^2	$10^{\wedge} 1$	10^0
$\begin{aligned} & =10 * 10 * 10 * 10 \\ & =10000 \end{aligned}$	$\begin{aligned} & =10 * 10 * 10 \\ & =1000 \end{aligned}$	$\begin{aligned} & =10 * 10 \\ & =100 \end{aligned}$	$=10$	$=1$
0	5	4	2	8

$$
\begin{aligned}
& 0 * 10000+5 * 1000+4 * 100+2 * 10+8 \\
= & 0+5000+400+20+8 \\
= & 5428
\end{aligned}
$$

Binary Number

Binary Number: 1101 à Decimal Number: ??

Binary Number

Binary Number: 1101 à Decimal Number: 13

$2 \wedge 4$	2^3	2^2	$2^{\wedge} 1$	$2^{\wedge} 0$
$\begin{aligned} & =2 * 2 * 2 * 2 \\ & =16 \end{aligned}$	$\begin{aligned} & =2 * 2 * 2 \\ & =8 \end{aligned}$	$=2 * 2$	$=2$	$=1$
0	1	1	0	1

$$
\begin{aligned}
& 0 * 16+1 * 8+1 * 4+0 * 2+1 * 1 \\
= & 0+8+4+0+1 \\
= & 13
\end{aligned}
$$

Binary Number

Decimal Number: 12 à Binary Number: ??

$\begin{aligned} & 2^{\wedge} 4 \\ = & 2 * 2 * 2 * 2 \\ = & 16 \end{aligned}$	$\begin{aligned} & 2 \wedge 3 \\ = & 2 * 2 * 2 \\ = & 8 \end{aligned}$	$\begin{aligned} & 2^{\wedge} 2 \\ = & 2 * 2 \\ = & 4 \end{aligned}$	$=2^{2^{\wedge 1}}$	$\begin{aligned} & 2^{\wedge \wedge} \\ & =1 \end{aligned}$

$12>=16 ?$

Binary Number

Decimal Number: 12 à Binary Number: ??

$\begin{aligned} & 2^{\wedge} 4 \\ = & 2 * 2 * 2 * 2 \\ = & 16 \end{aligned}$	$\begin{aligned} & 2^{\wedge} 3 \\ = & 2 * 2 * 2 \\ = & 8 \end{aligned}$	$\begin{aligned} & 2^{\wedge} 2 \\ = & 2 * 2 \\ = & 4 \end{aligned}$	$=2^{2^{\wedge} 1}$	$\begin{aligned} & 2^{2^{\wedge}}=1 \end{aligned}$
0				

$12>=16$?

Binary Number

Decimal Number: 12 à Binary Number: ??

$\begin{aligned} & 2^{\wedge} 4 \\ = & 2 * 2 * 2 * 2 \\ = & 16 \end{aligned}$	$\begin{aligned} & 2 \wedge 3 \\ = & 2 * 2 * 2 \\ = & 8 \end{aligned}$	$\begin{aligned} & 2^{\wedge} 2 \\ = & 2 * 2 \\ = & 4 \end{aligned}$	$=2^{2^{\wedge 1}}$	$\begin{aligned} & 2^{\wedge \wedge} \\ & =1 \end{aligned}$
0				

个
$12>=8 ?$

Binary Number

Decimal Number: 12 à Binary Number: ??

$\begin{aligned} & 2^{\wedge} 4 \\ = & 2 * 2 * 2 * 2 \\ = & 16 \end{aligned}$	$\begin{aligned} & 2 \wedge 3 \\ = & 2 * 2 * 2 \\ = & 8 \end{aligned}$	$\begin{aligned} & 2^{\wedge} 2 \\ = & 2 * 2 \\ = & 4 \end{aligned}$	$=2^{2^{\wedge 1}}$	$=2^{2^{\wedge} 0}$
0	1			

令
$12>=8$?

Binary Number

Decimal Number: 12 à Binary Number: ??

$12-8=4$

Binary Number

Decimal Number: 12 à Binary Number: ??

2^4	2^3	2^2	$2^{\wedge} 1$	2^0
$\begin{aligned} & =2 * 2 * 2 * 2 \\ & =16 \end{aligned}$	$\begin{aligned} & =2 * 2 * 2 \\ & =8 \end{aligned}$	$\begin{aligned} & =2 * 2 \\ & =4 \end{aligned}$	$=2$	$=1$
0	1			

$$
4>=4 ?
$$

Binary Number

Decimal Number: 12 à Binary Number: ??

$\begin{aligned} & 2^{\wedge} 4 \\ = & 2 * 2 * 2 * 2 \\ = & 16 \end{aligned}$	$\begin{aligned} & 2 \wedge 3 \\ = & 2 * 2 * 2 \\ = & 8 \end{aligned}$	$\begin{aligned} & \begin{array}{l} \\ \\ = \\ = \end{array} 2^{* 2} \\ = & 4 \end{aligned}$	$=2^{2^{\wedge} 1}$	${ }_{=1}^{2^{\wedge} 0}$
0	1	1		

$$
4>=4 ?
$$

Binary Number

Decimal Number: 12 à Binary Number: ??

2^4	2^3	2^2	$2^{\wedge 1}$	$2^{\wedge} 0$
$\begin{aligned} & =2 * 2 * 2 * 2 \\ & =16 \end{aligned}$	$\begin{aligned} & =2 * 2 * 2 \\ & =8 \end{aligned}$	$\begin{aligned} & =2 * 2 \\ & =4 \end{aligned}$	$=2$	$=1$
0	1	1		

$$
4-4=0
$$

Binary Number

Decimal Number: 12 à Binary Number: ??

2^4	2^3	2^2	$2^{\wedge 1}$	2^0
$\begin{aligned} & =2 * 2 * 2 * 2 \\ & =16 \end{aligned}$	$\begin{aligned} & =2 * 2 * 2 \\ & =8 \end{aligned}$	$\begin{aligned} & =2 * 2 \\ & =4 \end{aligned}$	$=2$	$=1$
0	1	1		

$0>=2$?

Binary Number

Decimal Number: 12 à Binary Number: ??

2^4	2^3	2^2	$2^{\wedge} 1$	$2^{\wedge} 0$
$\begin{aligned} & =2 * 2 * 2 * 2 \\ & =16 \end{aligned}$	$\begin{aligned} & =2 * 2 * 2 \\ & =8 \end{aligned}$	$\begin{aligned} & =2 * 2 \\ & =4 \end{aligned}$	$=2$	$=1$
0	1	1	0	

$0>=2$?

Binary Number

Decimal Number: 12 à Binary Number: ??

2^4	2^3	2^2	$2^{\wedge 1}$	2^0
$\begin{aligned} & =2 * 2 * 2 * 2 \\ & =16 \end{aligned}$	$\begin{aligned} & =2 * 2 * 2 \\ & =8 \end{aligned}$	$\begin{aligned} & =2 * 2 \\ & =4 \end{aligned}$	$=2$	$=1$
0	1	1	0	

$$
0>=1 \text { ? }
$$

Binary Number

Decimal Number: 12 à Binary Number: ??

2^4	2^3	2^2	$2^{\wedge} 1$	2^0
$\begin{aligned} & =2 * 2 * 2 * 2 \\ & =16 \end{aligned}$	$\begin{aligned} & =2 * 2 * 2 \\ & =8 \end{aligned}$	$\begin{aligned} & =2 * 2 \\ & =4 \end{aligned}$	$=2$	$=1$
0	1	1	0	0

$$
0>=1 \text { ? }
$$

Binary Number

Decimal Number: 12 à Binary Number: ??

$2^{\wedge} 4$	2^3	2^2	$2^{\wedge} 1$	$2^{\wedge} 0$
$\begin{aligned} & =2 * 2 * 2 * 2 \\ & =16 \end{aligned}$	$\begin{aligned} & =2 * 2 * 2 \\ & =8 \end{aligned}$	$\begin{aligned} & =2 * 2 \\ & =4 \end{aligned}$	$=2$	$=1$
0	1	1	0	0

DONE

Binary Number

Decimal Number: 12 à Binary Number: ??

2^4	2^3	2^2	$2^{\wedge 1}$	2^0
$\begin{aligned} & =2 * 2 * 2 * 2 \\ & =16 \end{aligned}$	$\begin{aligned} & =2 * 2 * 2 \\ & =8 \end{aligned}$	$\begin{aligned} & =2 * 2 \\ & =4 \end{aligned}$	$=2$	= 1
0	1	1	0	0

$$
12=>1100
$$

Two's Complement

4-bit

$\begin{aligned} & -1 * 2^{\wedge} 3 \\ = & -1 * 2 * 2 * 2 \\ = & -8 \end{aligned}$	$\begin{aligned} & 2^{\wedge} 2 \\ = & 2^{*} 2 \\ = & 4 \end{aligned}$	$=2^{2^{\wedge} 1}$	$=\begin{aligned} & 2^{\wedge} 0 \\ & =1 \end{aligned}$
0	1	1	1

7

Two's Complement

4-bit

$\begin{aligned} & -1 * 2^{\wedge} 3 \\ = & -1 * 2 * 2 * 2 \\ = & -8 \end{aligned}$	$\begin{aligned} & 2^{\wedge} 2 \\ = & 2^{* 2} \\ = & 4 \end{aligned}$	$=2^{2^{\wedge 1}}$	$=\begin{aligned} 2^{\wedge} 0 \\ =1 \end{aligned}$
1	0	0	0

-8

Two's Complement

4-bit

$\begin{aligned} & -1 * 2 \wedge 3 \\ = & -1 * 2 * 2 * 2 \end{aligned}$	$\begin{aligned} & 2^{\wedge 2} \\ = & 2 * 2 \\ = & 4 \end{aligned}$	$=2^{2^{\wedge} 1}$	$\begin{aligned} & 2^{2^{\wedge}} 1^{2} \end{aligned}$
1	1	0	1

-3

Variable

Variable in computer science is the name you give to computer memory

 locations which are used to store values in a computer program.$$
\begin{aligned}
& \text { int } \mathrm{i}=10 ; \\
& \text { double } \mathrm{d}=12.58 ; \\
& \text { boolean isEmpty = false; } \\
& \text { char } \mathrm{c}=\text { ' } \mathrm{q} \text { '; }
\end{aligned}
$$

Variable

Copyright 2016 by Smart Coding School

Variable

Declaration:

type variableName;

For example: int number; boolean isEmpty; String firstName;

Variable

Assignment:

variableName = value;

For example:
number = 10;
isEmpty = true;
firstName $=$ "Tom";

Variable

int number = 10;
 boolean isEmpty $=$
 true;
 String firstName $=$ "Tom";

Variable

public static void main(String[] args) \{ int $\mathrm{i}=10$;
int j;
j $=7$;
int $\mathrm{k}=\mathrm{i}+\mathrm{j}$;
System.out.println(k);

Variable

public static void main(String[] args) \{ int $\mathrm{i}=10$; int j;
j = 7;
int $\mathrm{k}=\mathrm{i}+\mathrm{j}$;
17
System.out.println(k);

Variable

public static void main(String[] args) \{
int $\mathrm{i}=10$;
int j ;
$j=7$;
int $\mathrm{k}=\mathrm{i}+\mathrm{j}$;
System.out.println($\mathrm{i}+"+"+\mathrm{j}+"="+\mathrm{k})$;

Variable

public static void main(String[] args) \{ int $\mathrm{i}=10$; int j;
$\mathrm{j}=7$;

$10+7=17$

int $\mathrm{k}=\mathrm{i}+\mathrm{j}$;
System.out.println(i+"+"+j+"="+k);

Variable

public static void main(String[] args)
\{ String s = "horse";
System.out.println(s);
System.out.println(s + s);

Variable

public static void main(String[] args) \{
String s = "horse"; System.out.println(s); System.out.println(s + s);

horse
 horsehorse

Convention

Rule:

1. int with int=> int
2. int with double $=>$ double
3. Anything with String $=>$ String
4. Expression operation from left to right

Convention

Example: int with int => int

$$
\begin{aligned}
& 5 / 2=2 \\
& 10 * 3=30
\end{aligned}
$$

Convention

Example:
 int with double => double

$$
\begin{aligned}
& 5 / 2.0=2.5 \\
& 5.0 / 2=2.5 \\
& 10 * 3.0=30.0
\end{aligned}
$$

Convention

Example:

Anything with String => String

$$
\begin{aligned}
& 4+" 1 "=>" 41 " \\
& " 1 "+4=>" 41 " \\
& " 1 "+{ }^{\prime \prime}{ }^{\prime \prime}=>" 12 "
\end{aligned}
$$

Convention

Example: Left to right

$$
\begin{aligned}
& 1 / 1.0+4+\text { " } 1 \text { " }=>\text { " } 5.01 \text { " } \\
& 1 / 1.0+(4+\text { " } 1 \text { ") }=>~ " 1.041 \text { " }
\end{aligned}
$$

